

ООО «Промышленная кибернетика» 614066, Российская Федерация, Пермский край, г. Пермь, ул. Стахановская, д.54, лит. П, офис 328 тел.: (342) 205-83-77, e-mail: info@inducyber.com, http://inducyber.com

Программная среда исполнения систем усовершенствованного управления технологическими процессами **«iXyber APC Runner»**

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

RNJATOHHA

В данном руководстве рассмотрены вопросы, связанные с эксплуатацией системы iXyber APC Runner.

Настоящее руководство предназначено для пользователей системы iXyber APC Runner, ответственных за настройку и мониторинг СУУТП.

ОГЛАВЛЕНИЕ

1 НАЧАЛО РАБОТЫ	4
1.1 Вход в систему	
1.2 Переход к работе с элементами СУУТП	
2 КОНТРОЛЛЕР СУУТП	7
2.1 Вкладка «Общее»	
2.1.1 Таблица контролируемых переменных (CV)	
2.1.2 Таблица управляемых переменных (MV)	9
2.1.3 Таблица возмущающих переменных (DV)	10
2.2 Вкладка «Матрица»	10
2.3 Вкладка «Тренд»	12
2.4 Вкладка «История событий»	
2.5 Настройка переменных контроллера	13
2.6 Вкладка «Настройки»	17
3 Виртуальный анализатор	19
3.1 Вкладка «Общее»	
3.1.1 Таблица РОV	
3.1.2 Таблица наблюдаемых переменных (DV)	19
3.2 Вкладка «Тренд»	20
3.3 Вкладка «Журнал»	
3.4 Вкладка «Журнал событий»	
3.5 Настройка переменных виртуального анализатора	
4 ОПИСАНИЕ АЛГОРИТМОВ РАБОТЫ	24
4.1 Алгоритм подстройки ВА	
4.2 Алгоритм валидации POV	

1 НАЧАЛО РАБОТЫ

1.1 Вход в систему

Доступ к Системе осуществляется по ссылке https://<host>/ в браузерах Google Chrome или Microsoft Edge, Mozilla Firefox.

В дальнейшем необходимо авторизоваться: указать логин и пароль, а затем нажать кнопку «Войти».

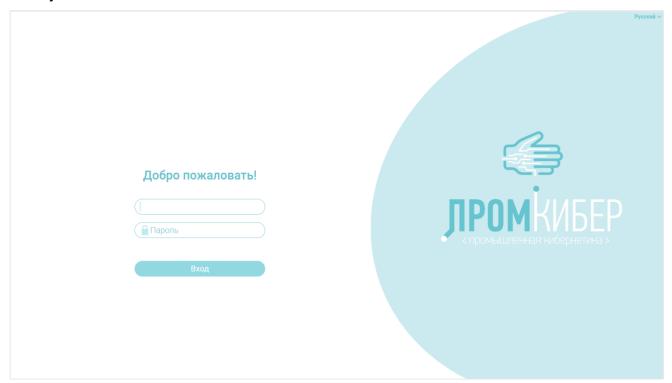


Рис. 1.1 – Страниц авторизации

1.2 Переход к работе с элементами СУУТП

Для перехода к работе с данными, мониторингу и настройке СУУТП необходимо открыть **«Дерево объектов»**, чтобы это сделать нужно нажать на три линии (А) в правом верхнем углу рабочей области или навести указатель мыши на выплывающую шторку (Б) слева (Рис. 1.2).

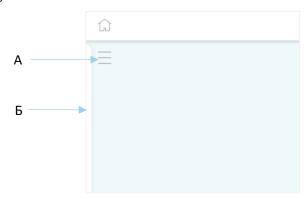


Рис. 1.2 – Элементы интерфейса для открытия «Дерева объектов»

В открывшемся **«Дереве объектов»** (Рис. 1.3), можно выбрать объект, с которым требуется работать.

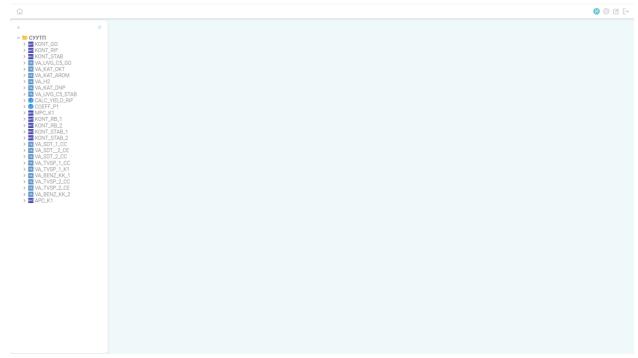


Рис. 1.3 – «Дерево объектов» на начальной странице

«Дерево объектов» состоит из уровней, вложенных друг в друга

Для начала работы с контроллером, в **«Дереве объектов»** следует перейдите к необходимому вложению, выбрать контроллер и нажать левой кнопкой мыши на вложенный объект **«МНЕМОСХЕМА».**

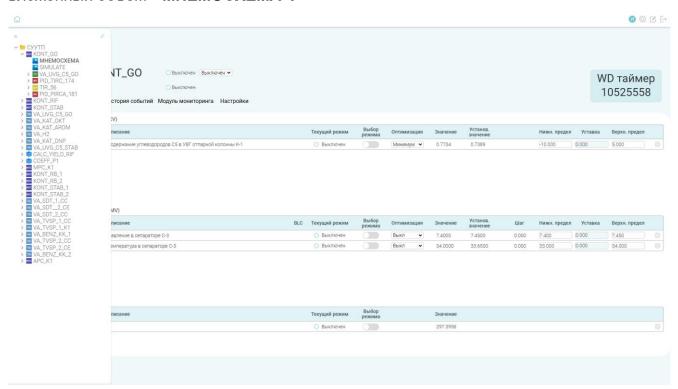


Рис. 1.4 – «Дерево объектов», вложение - контроллер

Для начала работы с виртуальным анализатором, в **«Дереве объектов»** следует перейти к вложению, в котором находится нужный вам анализатор затем выбрать его и нажать левой кнопкой мыши на вложенный объект **«МНЕМОСХЕМА».**

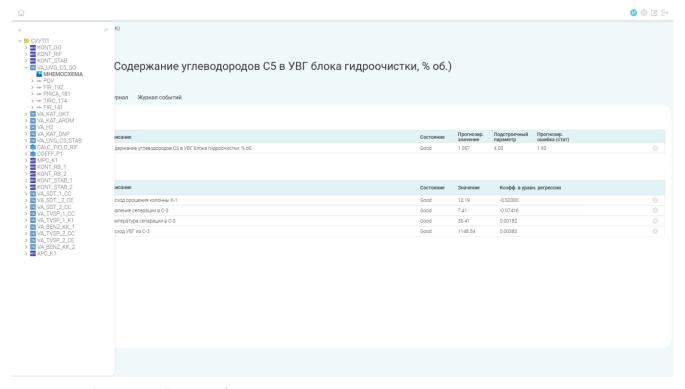


Рис. 1.5 – «Дерево объектов», вложение, содержащее виртуальный анализатор

2 КОНТРОЛЛЕР СУУТП

В разделе управления контроллером предоставляется возможность мониторинга и изменения его параметров, а также его отключения и включения.

На каждой мнемосхеме контроллеров сверху представлена мнемосхема навигации (Рис. 2.1). На ней отображается имя контроллера, а также статус и режим. С помощью выпадающего списка можно выбрать требуемый режим для контроллера.

Также под информацией о контроллере расположены кнопки для перехода на другие мнемосхемы данного контроллера.

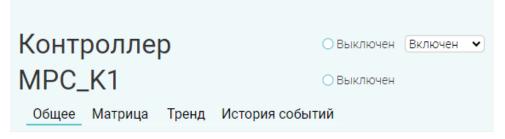


Рис. 2.1 – Навигации внутри экрана контроллера

2.1 Вкладка «Общее»

На вкладке **«Общее»** можно изменить режимы работы переменных, варианты оптимизации, нижний и верхний пределы.

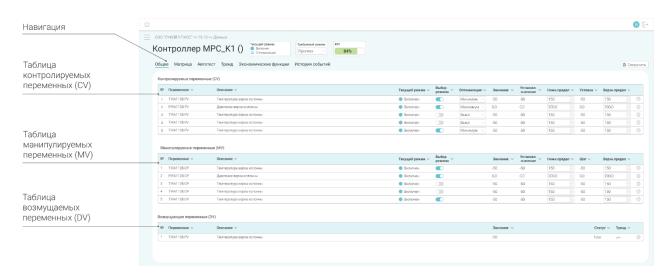


Рис. 2.2 – Управления контроллером, вкладка «Общее»

2.1.1 Таблица контролируемых переменных (CV)

В каждой строке данной таблицы отображается информации об одной переменной CV (Рис. 2.3):

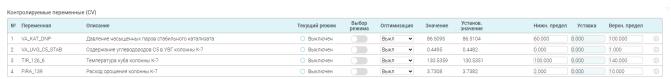


Рис. 2.3 – Таблица CV

№ – номер CV

Переменная – имя CV

Описание – описание CV

Текущий режим – режим и статус CV:

- Включен
- Выключен

Статус СV отображается с помощью текста, всего у CV есть 5 статусов:

- Выключен переменная выключена
- Симуляция переменная находиться в симуляции
- Включен статус свидетельствует о том, является ли включенной переменная
- **BAD POV** статус свидетельствует о непрохождении валидации
- **Het MV** статус обозначает, что управляющие переменные отсутствуют

Выбор режима – возможность переключения режима переменной.

Оптимизация – возможность выбрать тип оптимизации (Минимум / Максимум /Уставка /Выкл.)

Значение – значение и статус текущего значения СV.

Статус текущего значения CV отображается с помощью картинки, всего у текущего значения CV есть 5 статусов:

+	На верхней границе	Значение переменной находиться в диапазоне верхней границы
<u>+</u>	На нижней границе	Значение переменной находиться в диапазоне нижней границы
	За верхней границей	Значение переменной находиться вне диапазона верхней границы
❖	За нижней границей	Значение переменной находиться вне диапазона нижней границы
	Если нет картинки (Пустой статус)	Значение находится в приемлемом диапазоне и проблемы отсутствуют

Установ. значение – установленное значение для переменной.

Статус установленного значения СV отображается с помощью картинки, всего у установленного значения CV есть 5 статусов:

#	На верхней границе	Установленное значение переменной находиться в диапазоне верхней границы
<u> </u>	На нижней границе	Установленное значение переменной находиться в диапазоне нижней границы
╈	За верхней границей	Установленное значение переменной находиться вне диапазона верхней границы
❖	За нижней границей	Установленное значение переменной находиться вне диапазона нижней границы
	Если нет картинки (Пустой статус)	Установленное значение находится в приемлемом диапазоне и проблемы отсутствуют

Нижний предел – возможность изменить значение нижнего предела переменной

Уставка – возможность изменить значение уставки.

Верхний предел – возможность изменить значение верхнего предел переменной.

Кнопка для перехода в настройки переменной (Ошибка! Источник ссылки не найден.)

2.1.2 Таблица управляемых переменных (MV)

В каждой строке данной таблицы отображается информации об одной переменной MV (Рис. 2.4):



Рис. 2.4 – Таблица MV

№ – номер MV

Переменная – имя MV

Описание – описание MV

Статус BLC отображается с помощью картинки, всего у BLC есть 3 статуса:

H	На верхней границе	Выход регулятора на верхней границу
L	На нижней границе	Выход регулятора на нижней границу
	Если нет картинки (Пустой статус)	Выход регулятора находится в приемлемом диапазоне и проблемы отсутствуют

Текущий режим – режим и статус MV.

Режим MV отображается с помощью цвета круглого индикатора: закрашенный – Вкл., пустой – Выкл.

Статус MV отображается с помощью текста, всего у MV есть 5 статусов:

- Выключен переменная выключена
- Симуляция переменная находиться в симуляции
- Включен статус свидетельствует о том, является ли включенной переменная
- BAD POV статус свидетельствует о непрохождении валидации
- **Het CV** статус свидетельствует об отсутствии переменных CV

Выбор режима – возможность переключения режима переменной.

Оптимизация — возможность выбрать тип оптимизации (Минимум / Максимум /Уставка /Выкл.) **ножницнЗначение** — значение и статус текущего значения МV.

Статус текущего значения MV отображается с помощью картинки, всего у текущего значения MV есть 5 статусов:

+	На верхней границе	Значение переменной находиться в диапазоне верхней границы
+	На нижней границе	Значение переменной находиться в диапазоне нижней границы
4	За верхней границей	Значение переменной находиться вне диапазона верхней границы
lacksquare	За нижней границей	Значение переменной находиться вне диапазона нижней границы
	Если нет картинки (Пустой статус)	Значение находится в приемлемом диапазоне и проблемы отсутствуют

Установ. Значение – установленное значение для переменной.

Статус установленного значения MV отображается с помощью картинки, всего у установленного значения MV есть 5 статусов:

На верхней границе Установленное значение переменной находиться в диапазоне верхней границы

<u>#</u>	На нижней границе	Установленное значение переменной находиться в диапазоне нижней границы
₩	За верхней границей	Установленное значение переменной находиться вне диапазона верхней границы
❖	За нижней границей	Установленное значение переменной находиться вне диапазона нижней границы
	Если нет картинки (Пустой статус)	Установленное значение находится в приемлемом диапазоне и проблемы отсутствуют

Нижний предел – возможность изменить значение нижнего предела переменной

Шаг – значение шага.

Статус шага MV отображается с помощью картинки, всего у значения шага MV есть 3 статуса:

\mathcal{L}	Активное снижение	Значение шага идет на снижение
小	Активное повышение	Значение шага идет на повышение
	Если нет картинки (Пустой статус)	Значение шага стабильно

Верхний предел – возможность изменить значение верхнего предел переменной.

Кнопка для перехода в настройки переменной (Ошибка! Источник ссылки не найден.)

2.1.3 Таблица возмущающих переменных (DV)

В каждой строке данной таблицы отображается информации об одной переменной DV (Рис. 2.5):

Рис. 2.5 – Таблица DV

№ - номер DV

Переменная - имя DV

Описание - описание DV

Значение – текущее значение DV.

Статус – текущий статус DV.

Тренд – показатель тренда.

Кнопка для перехода в настройки переменной (Ошибка! Источник ссылки не найден.)

2.2 Вкладка «Матрица»

На вкладке **«Матрица»** (Рис. 2.6) предоставляется возможность редактирования параметров в матрице передаточных функций (Рис. 2.7).

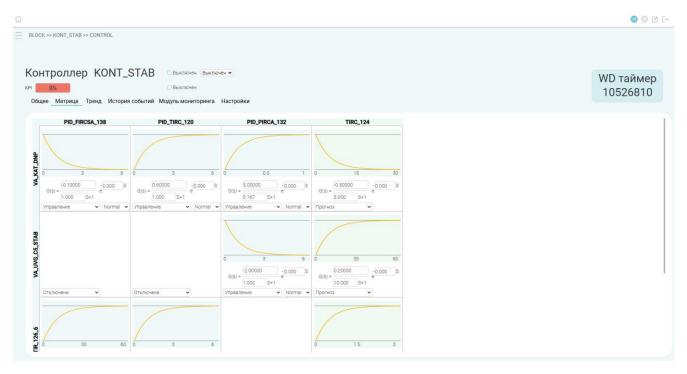


Рис. 2.6 - Вкладка «Матрица»

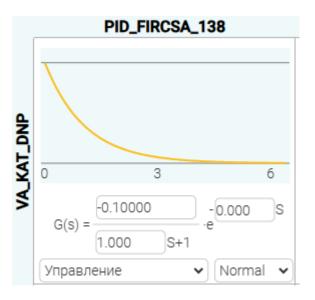


Рис. 2.7 – Передаточная функция с графиком

В каждой ячейке есть редактируемая передаточная функция с ее графиком, окно с режимом и приоритетом передаточной функции.

Таблица 2.1 – Режимы передаточной функции

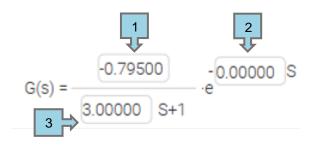

Режим	Описание
Выкл	ПФ Выключена
Прогноз	Режим прогнозирования
Управление	Режим управления

Таблица 2.2 – Приоритеты передаточной функции

Приоритет	Описание
Normal	Нормальный, работает в управлении и в оптимизации
Low	Низкий, включается в управление только при нарушении границ
Lowest	Самый низкий, включается в управление только при нарушении границ

Передаточная функция состоит из следующих элементов, представленных в таблице ниже:

Таблица 2.3 - Описание элементов передаточной функции

2.3 Вкладка «Тренд»

На вкладке **«Тренд»** предоставляется возможность подробного мониторинга параметров во времени. В каждом тренде есть 16 групп, в каждую группу можно добавить до 8 перьев.

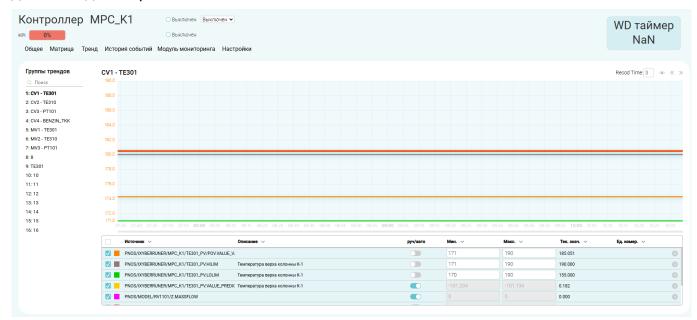


Рис. 2.8 – Вкладка «Тренд»

2.4 Вкладка «История событий»

На вкладке **«История событий»** (Рис. 2.9) находится журнал, в котором отображены все действия происходившие внутри объекта СУУТП. Информация, представленная в данном журнале, включает в себя дату и время, описание действия, информацию о пользователе, совершившем действие.

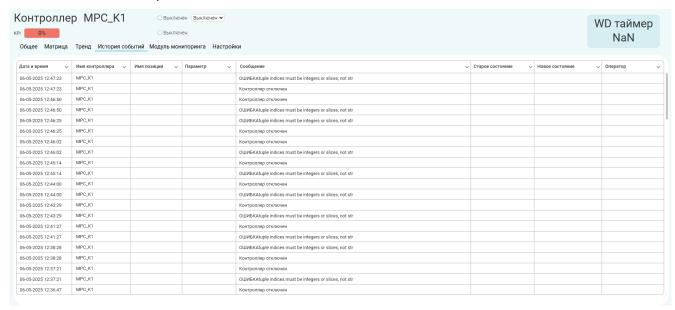


Рис. 2.9 – Управление контроллером, вкладка «История событий»

2.5 Настройка переменных контроллера

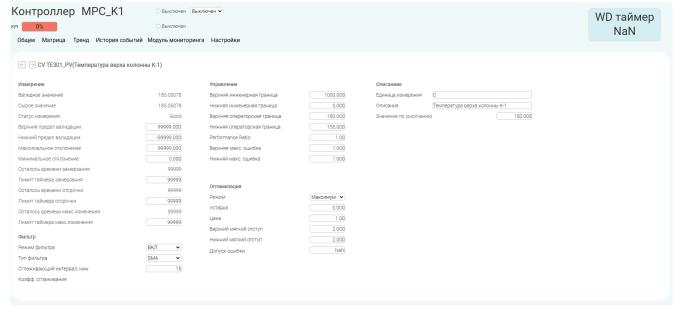


Рис. 2.10 - Экран настроек CV

Таблица 2.4 – Параметры и показатели CV

Параметр / показатель	Описание
Измерение	
Валидное значение	Валидное значение

Параметр / показатель	Описание
Сырое значение	Сырое значение
Статус измерения	Статус измерения
Верхний предел валидации	Верхний предел валидации
Нижний предел валидации	Нижний предел валидации
Максимальное отклонение	Максимальное изменение сырого значения за один период
Минимальное отклонение	Минимальное необходимое изменение сырого значения за один период
Осталось времени замерзания	Оставшееся время таймера в циклах
Лимит таймера замерзания	Максимальное время таймера в циклах
Осталось времени отсрочки	Оставшееся время таймера в циклах
Лимит таймера отсрочки	Максимальное время таймера в циклах
Осталось времени макс. изменения	Оставшееся время таймера в циклах
Лимит времени макс. изменения	Максимальное время таймера в циклах
Фильтр	
Режим фильтра	Выбор режима фильтра
Тип фильтра	Выбор типа фильтра
Сглаживающий интервал	Установка значения сглаживающего интервала в минутах
Коэфф. сглаживания	Установка значения коэффициента сглаживания
Описание	
Единица измерения	Единица измерения
Описание	Описание
Значение по умолчанию	Значение по умолчанию
Управление	
Верхняя инженерная граница	Верхняя инженерная граница
Нижняя инженерная граница	Нижняя инженерная граница
Верхняя операторская граница	Верхняя операторская граница
Нижняя операторская граница	Нижняя операторская граница
Performance Ratio	Коэффициент, влияющий на время регулирования CV, чем меньше, тем быстрее
Верхняя макс. ошибка	Верхняя макс. ошибка
Нижняя макс. ошибка	Нижняя макс. ошибка
Оптимизация	
Режим	Выбор режима оптимизации переменной
Уставка	Показатель значения уставки
Цена	Цена
Верхний мягкий отступ	Верхний мягкий отступ
Нижний мягкий отступ	Нижний мягкий отступ
Допуск ошибки	Максимальная допустимая ошибка, если ошибка меньше данного значения, то оптимизация не будет отключена

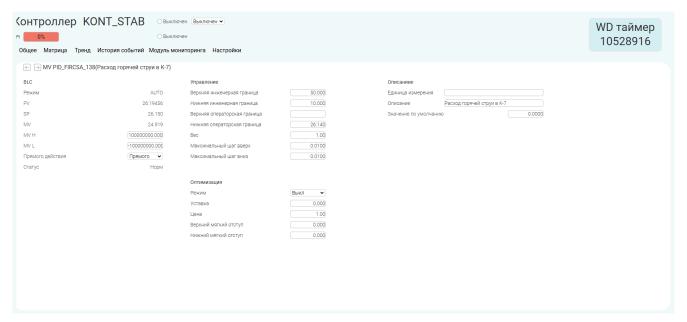


Рис. 2.11 – Экран настроек MV

Таблица 2.5 – Параметры и показатели MV

Параметр / показатель	Описание	
BLC		
Режим	Режим работы у ПИД-регулятора	
PV	Основная величина у ПИД-регулятора	
SP	Уставка у ПИД-регулятора	
MV	Выход у ПИД-регулятора	
MV H	Верхнее ограничение выхода у ПИД-регулятора	
MV L	Нижнее ограничение выхода у ПИД-регулятора	
Прямого действия	Алгоритм работы контура ПИД	
Статус	Статус BLC	
Описание		
Единица измерения	Единица измерения	
Описание	Описание	
Значение по умолчанию	Значение по умолчанию	
Управление		
Верхняя инженерная граница	Верхняя инженерная граница	
Нижняя инженерная граница	Нижняя инженерная граница	
Верхняя операторская граница	Верхняя операторская граница	
Нижняя операторская граница	Нижняя операторская граница	
Bec	Коэффициент, влияющий на время агрессивность MV, чем меньше, тем агрессивнее	
Максимальный шаг вниз	Максимальный шаг вниз	
Максимальный шаг вверх	Максимальный шаг вверх	
Оптимизация		
Режим	Выбор режима оптимизации переменной	

Параметр / показатель	Описание
Уставка	Показатель значения уставки
Цена	Цена
Верхний мягкий отступ	Верхний мягкий отступ
Нижний мягкий отступ	Нижний мягкий отступ

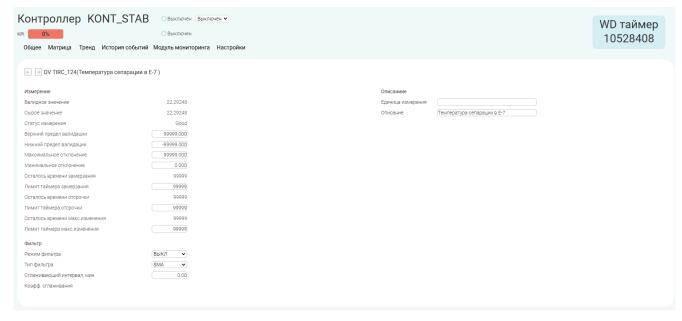


Рис. 2.12 – Экран настроек DV

Таблица 2.6 – Параметры и показатели DV

Параметр / показатель	Описание
Измерение	
Валидное значение	Валидное значение
Сырое значение	Сырое значение
Статус измерения	Статус измерения
Верхний предел валидации	Верхний предел валидации
Нижний предел валидации	Нижний предел валидации
Максимальное отклонение	Максимальное изменение сырого значения за один период
Минимальное отклонение	Минимальное необходимое изменение сырого значения за один период
Осталось времени замерзания	Оставшееся время таймера в циклах
Лимит таймера замерзания	Максимальное время таймера в циклах
Осталось времени отсрочки	Оставшееся время таймера в циклах
Лимит таймера отсрочки	Максимальное время таймера в циклах
Осталось времени макс. изменения	Оставшееся время таймера в циклах
Лимит времени макс. изменения	Максимальное время таймера в циклах
Фильтр	
Режим фильтра	Выбор режима фильтра

Параметр / показатель	Описание
Тип фильтра	Выбор типа фильтра
Сглаживающий интервал	Установка значения сглаживающего интервала в минутах
Коэфф. сглаживания	Установка значения коэффициента сглаживания
Описание	
Единица измерения	Единица измерения
Описание	Описание
Значение по умолчанию	Значение по умолчанию

2.6 Вкладка «Настройки»

На вкладке **«Настройки»** (Рис. 2.9) находятся таблицы для удобной настройки параметров контроллера.

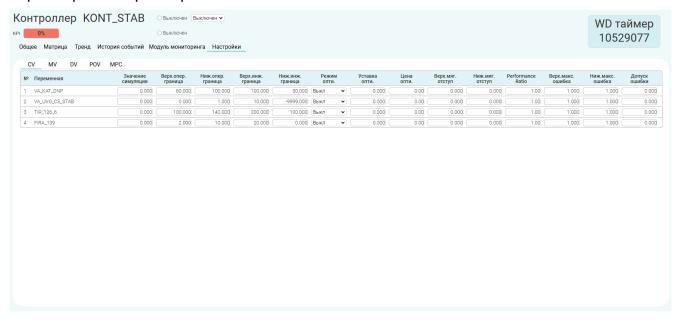


Рис. 2.13 – «Настройки»

Также на вкладке «Настройки» можно настроить сам контроллер.

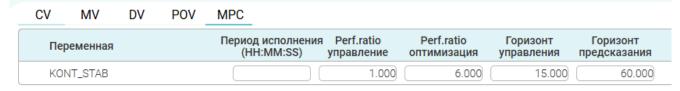


Рис. 2.14 - «Настройки»

Таблица 2.7 – Параметры и показатели контроллера

Параметр / показатель	Описание
Период исполнения	Период исполнения
Perf. Ratio управления	Perf. Ratio управления, чем он меньше тем быстрее контроллер работает в управлении

Параметр / показатель	Описание
Perf. Ratio оптимизации	Perf. Ratio оптимизации, чем он меньше тем быстрее контроллер работает в оптимизации
Горизонт управления	Горизонт управления
Горизонт предсказания	Горизонт предсказания

3 Виртуальный анализатор

В разделе управления виртуальным анализатором, аналогично разделу управления контроллером, представляется возможность мониторинга и изменения его параметров, включения и отключения.

3.1 Вкладка «Общее»

На вкладке **«Общее»** (Рис. 3.1) можно изменить режимы работы переменных, единицы измерения анализатора.



Рис. 3.1 – Управление виртуальным анализатором, вкладка «Общее»

3.1.1 Таблица POV

В каждой строке данной таблицы (Рис. 3.2) отображается информации об одной переменной POV:

Рис. 3.2 - Таблица POV на вкладке «Общее»

Переменная – имя POV

Описание – описание POV

Состояние – статус текущего состояния переменной.

Прогнозир. значение – прогнозируемое значение переменной.

Подстроечный параметр – значение подстроечного параметра переменной (BIAS).

Прогнозир. ошибка – значение прогнозируемой статической ошибки.

Кнопка для перехода в настройки переменной (Рис. 3.7)

3.1.2 Таблица наблюдаемых переменных (DV)

В каждой строке данной таблицы отображается информации об одной переменной DV (Рис. 3.3):

Рис. 3.3 – Таблица DV на вкладке «Общее»

№ - номер DV

Переменная - имя DV

Описание - описание DV

Текущий режим – режим и статус DV.

Режим DV отображается с помощью цвета круглого индикатора: закрашенный – Вкл., пустой – Выкл.

Состояние – статус состояния переменной.

Значение – измеряемое значение переменной.

Коэфф. в уравнен. регрессии – значение коэффициента в уравнении регрессии.

Кнопка для перехода в настройки переменной (Рис. 3.7)

3.2 Вкладка «Тренд»

На вкладке «Тренд» можно рассмотреть как изменялись показания ВА и ЛА.

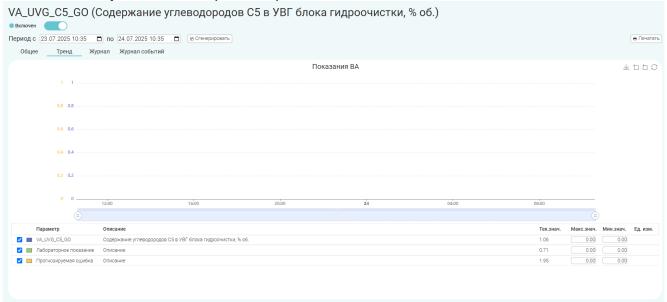


Рис. 3.4 - Вкладка «Тренд»

3.3 Вкладка «Журнал»

На вкладке **«Журнал»** (Рис. 3.5) представлен журнал, в котором собрана информация о данных ЛА. Структура таблицы данных состоит из разделов: дата, время, значение ВА, значение ЛА, статус.

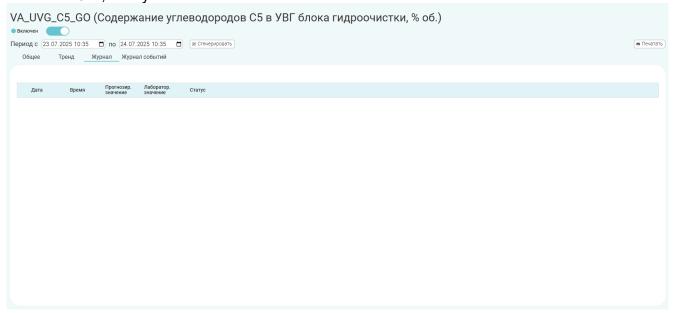


Рис. 3.5 – Управления виртуальным анализатором, вкладка «Лабораторные данные»

3.4 Вкладка «Журнал событий»

На вкладке **«Журнал событий»** (Рис. 3.6) находится журнал, в котором отображены все действия происходившие внутри объекта СУУТП, в данном случае виртуального анализатора. Информация, представленная в данном журнале, включает в себя дату и время, описание действия, информацию о пользователе, совершившем действие.

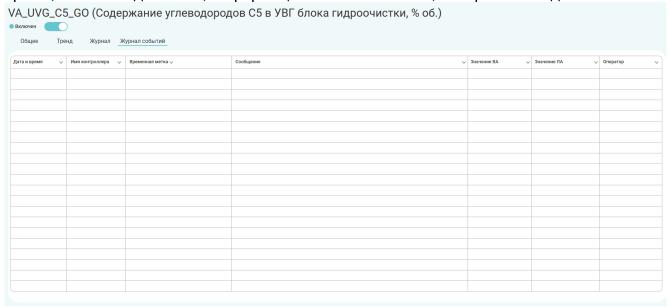


Рис. 3.6 – Управления виртуальным анализатором, вкладка «Журнал событий»

3.5 Настройка переменных виртуального анализатора

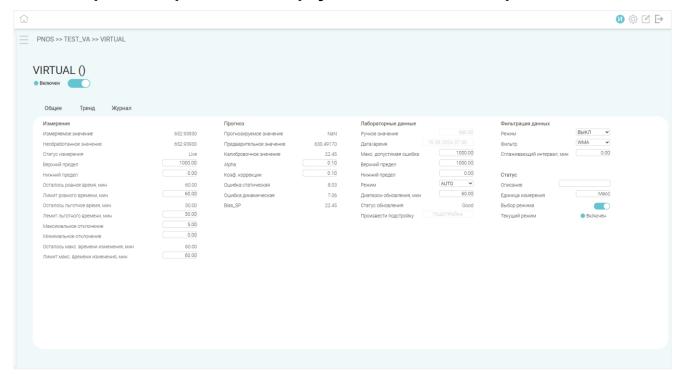


Рис. 3.7 – Вкладка настройки переменной POV

Таблица 3.1 – Параметры и показатели переменной виртуального анализатора

Параметр / показатель	Описание
Измерение	
Валидное значение	Валидное значение
Сырое значение	Сырое значение
Статус измерения	Статус измерения
Верхний предел валидации	Верхний предел валидации
Нижний предел валидации	Нижний предел валидации
Максимальное отклонение	Максимальное изменение сырого значения за один период
Минимальное отклонение	Минимальное необходимое изменение сырого значения за один период
Осталось времени замерзания	Оставшееся время таймера в циклах
Лимит таймера замерзания	Максимальное время таймера в циклах
Осталось времени отсрочки	Оставшееся время таймера в циклах
Лимит таймера отсрочки	Максимальное время таймера в циклах
Осталось времени макс. изменения	Оставшееся время таймера в циклах
Лимит времени макс. изменения	Максимальное время таймера в циклах
Фильтр	
Режим фильтра	Выбор режима фильтра
Тип фильтра	Выбор типа фильтра
Сглаживающий интервал	Установка значения сглаживающего интервала в минутах

Параметр / показатель	Описание
Коэфф. сглаживания	Установка значения коэффициента сглаживания
Описание	
Единица измерения	Единица измерения
Описание	Описание
Подстройка	
Макс. допустимая ошибка	Макс. допустимая ошибка
Верхний предел	Верхний предел
Нижний предел	Нижний предел
Диапазон обновления, мин	Установка диапазона обновления в минутах
Alpha	Коэфф. отвечающий за скорость подстройки, 1 максимальная скорость, 0 подстройка не производиться.
Коэф. коррекции	Коэфф. отвечающий за величину подстройки относительно ошибки
Режим	Выбор режима(Auto, Man)
Статус обновления	Показатель статуса обновления
Ручная подстройка	
Ручное значение	Установка значения вручную (Активно в ручном режиме)
Дата/время	Установка даты и времени вручную (Активно в ручном режиме)
Произвести подстройку	Возможность произвести подстройку переменной (Активно в ручном режиме)
Лаборатория	
Значение ЛА	Значение последнего принятого ЛА
Временная метка ЛА	Временная метка последнего принятого ЛА
Ошибка ВА	Ошибка ВА относительно последнего принятого ЛА
BIAS	BIAS

4 ОПИСАНИЕ АЛГОРИТМОВ РАБОТЫ

4.1 Алгоритм подстройки ВА

Виртуальный анализатор (ВА) функционирует на основе анализа данных и подстройки коэффициентов для достижения оптимальных выходных значений. Процесс подстройки начинается с валидации входных данных, после чего производится расчет предсказанного значения и корректировка смещения (bias), влияющего на точность прогноза.

Смещение является динамическим параметром, который корректируется на каждом шаге работы ВА. Смещение (*BIAS*) корректируется с учетом разницы между текущим значением смещения и его целевым значением (*BIAS_SP*). Коэффициент подстройки *ALPHA* определяет скорость этой коррекции. Новое значение смещения рассчитывается по формуле:

$$BIAS = BIAS + \alpha \cdot (BIAS_SP - BIAS)$$

где: BIAS — текущее значение смещения, BIAS_SP — целевое значение смещения, ALPHA — коэффициент коррекции.

Предсказанное значение BA (*VALUE_RAW*) вычисляется на основе валидированных входных данных (*VALUE_VALIDATED*) и соответствующих коэффициентов (*COEFFICIENT*), так же к нему добавляется смещение *BIAS* для получения финального предсказания. Формула предсказанного значения BA:

$$VALUE_RAW = \sum (VALUE_VALIDATED \cdot COEFFICIENT) + BIAS$$

где: VALUE_VALIDATED — валидированное значение входного параметра, COEFFICIENT — коэффициент для каждого валидированного параметра; BIAS — текущее значение смещения.

Подстройка виртуального анализатора (ВА) осуществляется на основе данных лабораторного анализа. Подстройка начинается с параметра LAB_ST, который содержит время отбора лабораторной пробы. Когда данные лабораторного анализа становятся доступны, ВА использует параметр LAB_UPDATE_RANGE, задаваемый пользователем, чтобы определить временной диапазон, в пределах которого будет рассчитываться среднее значение предсказанного значения ВА. В пределах этого диапазона система собирает значения ВА и рассчитывает их среднее значение.

После этого среднее значение сравнивается с фактическим лабораторным значением, переданным через параметр *LAB_VALUE*. Разница между этими двумя значениями заносится в параметр *ERROR*. Далее, на основе вычисленного отклонения (*ERROR*), корректируется целевое смещение *BIAS_SP*. Этот параметр вычисляется с использованием множителя смещения (BIAS_MULT), что позволяет BA адаптировать свои будущие предсказания с учётом фактических данных лабораторных анализов.

Формула для расчета целевого смещения *BIAS_SP* выглядит следующим образом:

$$BIAS_SP = BIAS + ERROR * BIAS_MULT$$

где: BIAS — текущее значение смещения, ERROR — разница между фактическим лабораторным значением (LAB_VALUE) и предсказанным значением BA, BIAS_MULT — коэффициент множителя, задаваемый пользователем, который определяет, насколько сильно отклонение (ERROR) повлияет на изменение смещения. Этот коэффициент позволяет регулировать чувствительность BA к изменениям лабораторных данных.

Подстройка виртуального анализатора (ВА) осуществляется как в автоматическом, так и в ручном режиме.

Автоматическая подстройка выполняется без участия человека. Она активируется каждый раз, когда новые значения лабораторного анализа поступают в систему. В этом

случае ВА автоматически рассчитывает смещение BIAS_SP, основываясь на разнице между предсказанным значением и фактическими данными лаборатории. Это позволяет анализатору постоянно адаптироваться к изменениям в лабораторных данных, улучшая точность своих прогнозов.

Ручная подстройка предполагает участие оператора, который вводит дату отбора пробы и соответствующее значение лаборатории. После ввода этих данных оператор нажимает кнопку подстройки, инициируя процесс обновления смещения. Этот режим позволяет оператору контролировать и вносить изменения в настройки анализатора на основании конкретных случаев или при необходимости внести коррективы вручную.

4.2 Алгоритм валидации POV

Фильтрация и проверка на достоверность входных сигналов ВА, контролируемых, наблюдаемых переменных и дополнительных вычислений СУУТП осуществляются встроенным функционалом СУУТП.

СУУТП осуществляет чтение значения входного параметра из ОРС-сервера РСУ. Значение входного параметра приходит в POV VALUE_RAW. Если качество сигнала неудовлетворительное, параметр считается недостоверным, и присваивается статус «BadOPC». В случае удовлетворительного качества выполняется проверка на соответствие значений установленным пределам: верхнему (HI_LIMIT) и нижнему (LO_LIMIT). Если значение находится в допустимых пределах, проводится дополнительная проверка отклонения от предыдущего валидированного значения, после чего активируются соответствующие механизмы:

Если отклонение значения VALUE_RAW от валидированного параметра меньше минимального допустимого (MIN_DEVIATION), и значение не приближено к пределам, начинается отсчет времени стабилизации (параметр FLAT_TIME_LEFT). Во время этого отсчета значению присваивается статус «MinDevHold». Если фильтрация включена, активируется процедура фильтрации, в противном случае новое значение признается валидным и записывается. По завершении времени стабилизации (FLAT_TIME_LEFT) запускается отсчет времени отсрочки (GRACE_TIME_LEFT). В течение этого времени значение не считается валидным и не записывается. По истечении таймера отсрочки значению присваивается статус «MinDev».

Если значение выходит за пределы допустимого отклонения (*MAX_DEVIATION*), активируется таймер изменения параметра (*MAX_CHANGE_TIME_LEFT*), а значению присваивается статус «MaxDevHold», при этом система ожидает возможного возвращения значения в нормальные пределы. Одновременно отсчитывается время отсрочки (*GRACE_TIME_LEFT*), по завершении которого система присваивает значению статус «MaxDev». В течение работы таймеров значение не считается валидным и не записывается.

Если входное значение параметра оказывается ниже нижнего предела (*LO_LIMIT*), начинается отсчет времени отсрочки (*GRACE_TIME_LEFT*). Если время не истекло, значению присваивается статус «MinValidHold», что указывает на временное нахождение сигнала ниже допустимого минимума, при этом система ожидает его возможного возвращения в допустимые пределы. По истечении времени отсрочки присваивается статус «MinValid», что означает окончательное признание сигнала недопустимым.

Если входное значение параметра оказывается выше верхнего предела (*HI_LIMIT*), также начинается отсчет времени (*GRACE_TIME_LEFT*). Если время не истекло, значению присваивается статус «MaxValidHold», что свидетельствует о временном превышении допустимого максимума, при этом система ожидает возможного

возвращения значения в нормальные пределы. Если время отсрочки истекает, присваивается статус «MaxValid», что указывает на окончательное признание значения превышающим допустимый максимум.