

iXyber APC Designer

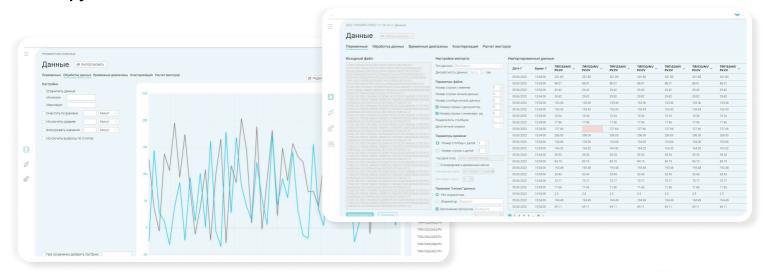
Комплексная обработка больших объемов исторических технологических данных, идентификация математических моделей и разработка конфигурации систем усовершенствованного управления технологическими процессами (СУУТП)

iXyber APC Designer - это инженерная среда СУУТП на всех этапах жизненного цикла: ТЭА, разработка, внедрение, сопровождение и модернизация с поддержкой командной распределенной работы.

iXyber APC Designer предназначен для обработки массивов исторических данных, полученных с технологической установки с целью:

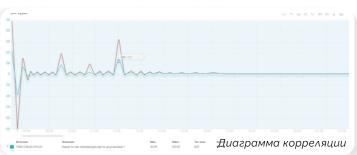
- анализа перспектив внедрения системы улучшенного управления (СУУТП),
- разработки моделей виртуальных анализаторов (ВА);
- 🔘 идентификации моделей динамики для многопараметрических контроллеров (МПК).
- Создание конфигурации вычислительных платформ (ВА, МПК) для среды выполнения платформ «iXyber APC Runner».

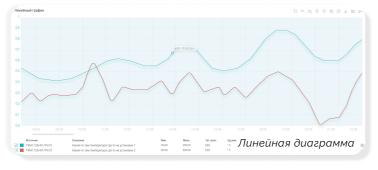
Как инженер СУУТП в составе распределенной проектной команды, хочу совместно работать со своими коллегами над одним проектом СУУТП на всех этапах жизненного цикла, отслеживать историю изменений и иметь возможность вернуться к прежним

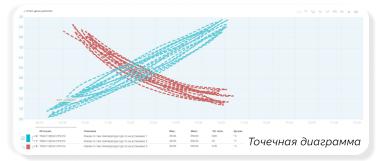

Как эксперт СУУТП завода, хочу иметь доступ к рабочему проекту СУУТП для контроля работ по созданию СУУТП и в дальнейшем по ее техническому сопровождению. Хочу иметь возможность работы с проектом СУУТП любой установки в едином информационном поле.

Основные подсистемы:

- 1. Подсистема пользовательского интерфейса;
- 2. Подсистема аутентификации и авторизации;
- 3. Подсистема резервного копирования проекта;
- 4. Подсистема импорта/экспорта исторических данных;
- 5. Подсистема хранения исторических данных;
- 6. Подсистема обработки данных;
- 7. Подсистема идентификации регрессионных моделей;
- 8. Подсистема идентификации динамических моделей;
- 9. Подсистема расчёта эффектов;
- 10. Подсистема симуляции работы контроллеров СУУТП.

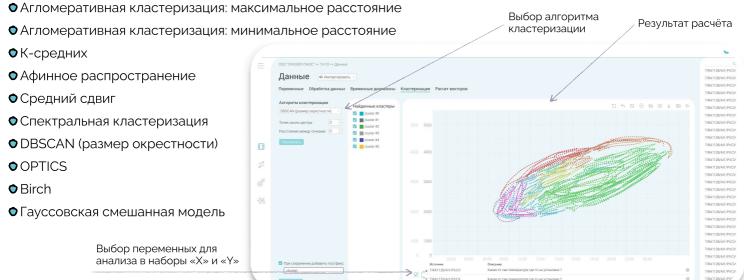

1. Загрузка и подготовка входных данных

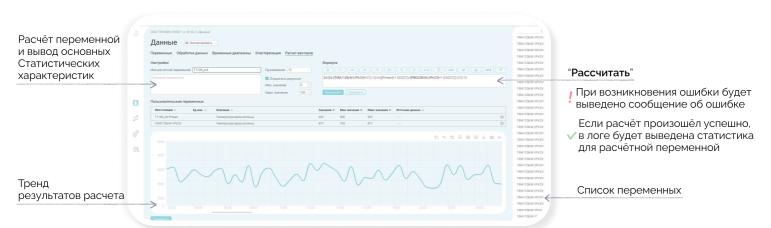



- **У**даление, фильтрация данных по правилам, определяемым пользователем;
- ☑ Заполнение пропусков (интерполяция, константа, среднее значение);
- ✓ Сдвиг данных во времени на произвольное число минут;
- ✓ Исключение выбросов по «п сигма»;
- ✓ Сглаживание скользящее среднее за п минут и (или) фильтр Калмана;
- ▼ Кластерный анализ для п переменных с графическим отображением результата кластеризации и выводом перечня найденных кластеров для последующей разметки данных

загружаемые данные можно просматривать в разных режимах (графики. таблица), режим реального времени

2. Модификация данных

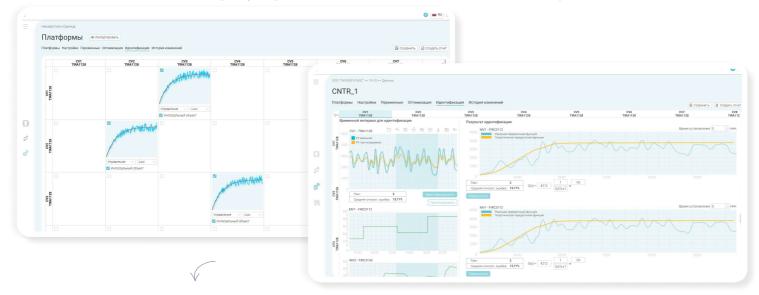

Исключение/фильтрация/сдвиг


Кластерный анализ – статистическая процедура, выполняющая сбор данных, содержащих информацию о выборке объектов, и затем упорядочивающая объекты в сравнительно однородные группы

Список доступных алгоритмов:

- Агломеративная кластеризация: минимальная дисперсия классов
- Агломеративная кластеризация: среднее расстояние

Расчет векторов



3. Идентификация

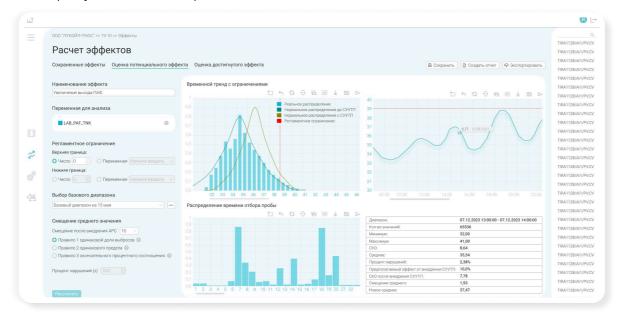
Идентификация динамических моделей

Построение моделей динамики для многопараметрических контроллеров, необходимых для точного регулирования сложных технологических процессов.

- ✓ Возможность вносить изменения в уравнение аппроксимирующей передаточной функции;
- ✓ Самодокументирования по результатам идентификации и созданной платформе контролера СУУТП с созданием документа в формате MS Word.

Идентификация регрессионных моделей

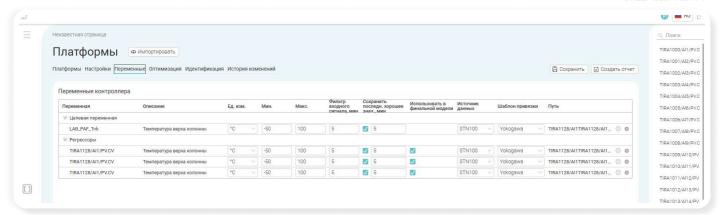
Создание виртуальных анализаторов, позволяющих моделировать работу оборудования и анализировать ключевые показатели качества продукции в режиме реального времени.



- ✓ Алгоритм советчика при выборе регрессоров (автовыбор регрессоров);
- **М** Возможность выбора временного интервала для идентификации и временного интервала для валидации полученного уравнения;
- ▼ Разметка «плохих» временных интервалов;
- ▼ Поиск сдвига данных лаборатории и/или запаздывания по регрессорам.

4. Оценка эффектов

Оценка эффектов на этапе технико-экономического обоснования и по результатам внедрения СУУТП



Подходы в оценке эффекта отличаются по типу ограничения переменной:

- ✓ «Правило одинакового предела»; переменная без жестких ограничений или вообще без ограничений
- ▼ «Правило одинаковой доли выбросов»
 переменная с жестким ограничением,
 при этом количество нарушений ограничения является приемлемым
- ✓ «Правило окончательного процентного соотношения»
 переменная с жестким ограничением,
 при этом количество нарушений ограничения является неприемлемым

5. Оценка эффектов

Настройка и оптимизация архитектуры вычислительной инфраструктуры для эффективного функционирования МПК и ВА моделей в среде исполнения **iXyber APC Runner**.

- **М** Контроль версий;
- ✓ Достаточное количество настроек для быстрого проектирования;
- ✓ Гибкость в структуре контроллера и ВА;
- Шаблоны привязок;
- **М** Возможность добавления функционала по просьбе Заказчика.

Обзор функционала существующих программ

	Honeywell (PSES)	Yokogawa	Τ-Cοφτ	iXyber APC Designer (текущие решения)	iXyber APC Designer (разрабатываемые решения)
Операционная система	S Windows	S Windows	OS Windows	 кроссплатформенное приложение 	кроссплатформенное (браузерное) приложение, многопользовательский режим
Интерфейс	перенасыщенный функциями интерфейс, сложная навигация	👍 простой понятный интерфейс	простой понятный интерфейс	понятный последовательный	обновленный интерфейс
Функционал проектирования СУУТП	язбыточен пзбыточен	достаточное количество настроек для быстрого проектирования,	минимально достаточный функционал	минимально достаточный функционал	достаточное количество настроек для быстрого проектирования, наличие гибких настроек, возможность добавления специфичного функционала по просьбе Заказчика
Визуализация Данных	загружаемые данные можно просматривать в разных режимах 👛 (графики. таблица)	ресурсоемкое построение графиков	лавная работа графиков, режим реального времени	👍 многообразие графиков	загружаемые данные можно просматривать в разных режимах (графики. таблица), режим реального времени
Построение контроллеров и ВА	гибкость в структуре Контроллера и ВА	удобен процесс построения контроллеров и ВА, метрики оценки качества полученных моделей недостаточно описаны в документации	удобен процесс построения контроллеров и ВА	удобен процесс построения контроллеров и ВА	гибкость в структуре контроллера и ВА
Внесение правок	можно вносить правки онлайн в модель контроллера	чтобы внести правки, нужно остановить контроллер и подгрузить данные, затем запускать заново	можно вносить правки фонлайн в модель контроллера	возможность внесения правок без перезагрузки системы	возможность внесения правок с контролем версий
Привязки переменных к РСУ	есть шаблоны привязок, при привязке из выпадающего меню нужно выбирать переменную и настраивать ее отдельно	есть шаблоны привязок на основе ІО Мар (регулярные выражения)	📭 ручная привязка	есть шаблоны привязок	есть шаблоны привязок
Работоспособность среды разработки	👍 стабильно работает	периодически зависает при обработке большого количества данных	👍 стабильно работает	встречаются незначительные баги («детские болезни»)	стабильно работает
Контроль версий	нет контроля версий	нет контроля версий	нет контроля версий	нет контроля версий	контроль версий, гибкость системы резервного копирования

٦

inducyber.ru

୬ +7 (342) 205-83-77

© г. Пермь, ул. Стахановская, д.54, лит. П, офис 328